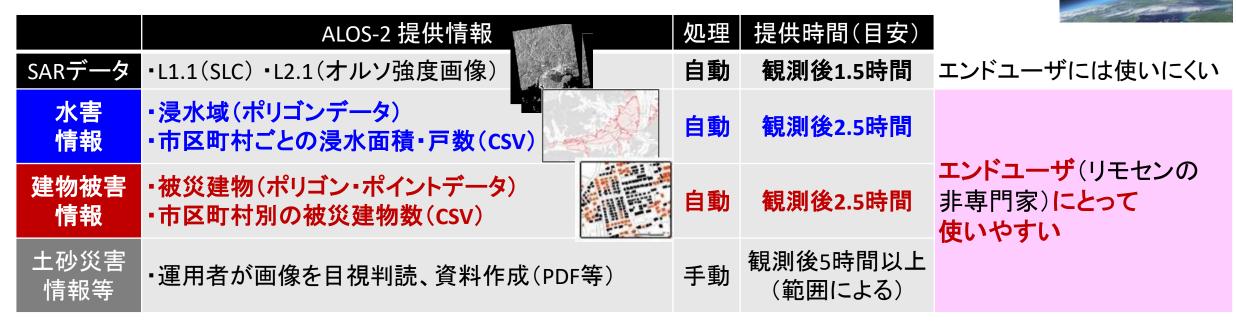
ALOS-2による地震建物被害抽出アルゴリズムの改良と評価

大木真人1,川北史朗2,本木保2,磯口治3,平野晴也3,田殿武雄1

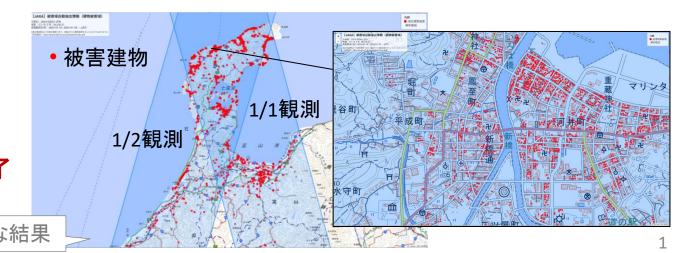
- 1(国研)宇宙航空研究開発機構 地球観測研究センター
- 2(国研)宇宙航空研究開発機構衛星利用運用センター
 - 3(一財)リモート・センシング技術センター

1. 背景: ALOS-2による災害被害把握の現状

- ALOS-2:LバンドSARによる昼夜・天候を問わない観測(特に夜の観測が防災上重要)
- 災害時は自動解析によりユーザに迅速に被害情報を提供、災害対応に活用中(2022年度-)



- 〈例〉2024年能登半島地震の対応結果(時刻JST)
 - 1/1 16:10 地震発生
 - 1/1 23:10 ALOS-2による最初の観測
 - 1/2 02:44 能登半島ほぼ全域の建物被害判定完了



2. 課題と本研究での対応策

・ 精度面の課題

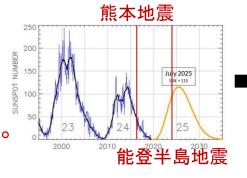
- 解析・検証データの不足: 現在運用中の手法(Natsuaki,2018)は 2016年熊本地震のALOS-2観測(1回)と、 185棟の被害現地調査を元に開発。

対応策(本研究)

2016年熊本地震と2024年能登半島地震の 計6回のALOS-2観測、計10,633棟の現地調査を 使用。

→ 本発表 3. 使用データ

- **電離層遅延による画像の位置ずれ**: 誤判定の要因となっている? SARの幾何精度の建物被害検出への 影響を議論した既往研究はあまりない。



電離層遅延補正の導入により位置精度を向上、 被害検出精度が改善するか比較

→ 本発表 4. 画像位置ずれ対策

- アルゴリズム改善

現在運用中の手法はコヒーレンスを用いた単純な閾値法

閾値法(従来)と機械学習を比較

→ 本発表 5. 建物被害抽出方法

その他の課題

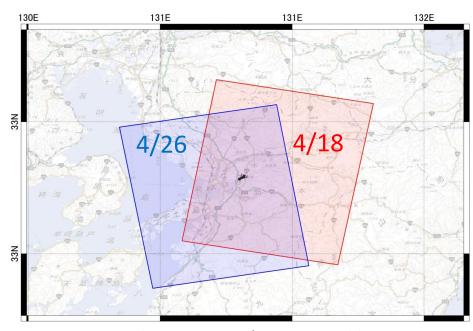
- 情報提供先、情報提供方法(内閣府殿、国土交通省殿、民間企業等)
- 複数衛星・複数データの統合・連携

3. 使用データ ①SARデータ

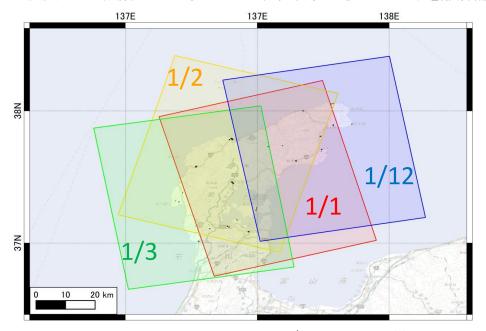
• 2016年熊本地震、2024年能登半島地震のALOS-2 PALSAR-2データ(全て3m分解能、50km幅、HH偏波)

災害	災害後日付	災害前日付1	災害前日付2	観測	オフナ	日数差	日数差	日数差	検証	電離層遅延B1
次百	Α	B1	B2	方向	ディア角	A-B1	B1-B2	A-B2	建物数	(m)※
能登半島地震	2024/01/01	2022/09/26	2022/06/20	AL	U2-6	462	98	560	4,602	2.29
能登半島地震	2024/01/02	2023/06/06	2022/11/22	DL	U2-8	210	196	406	4,462	9.54
能登半島地震	2024/01/03	2023/12/06	2023/04/12	AR	U2-9	28	238	266	3,632	2.19
能登半島地震	2024/01/12	2023/11/03	2023/07/14	AR	U2-7	70	112	182	1,652	2.08
熊本地震	2016/04/18	2016/03/07	2015/11/30	DR	U2-7	42	98	140	5,520	9.38
熊本地震	2016/04/26	2016/03/29	2015/12/22	AR	U2-9	28	98	126	5,520	3.12

※本解析の運用上、電離層遅延の補正は過去画像(B1)に対して行われ、その他の画像(A、B2)については干渉処理の段階でB1に対して正しく位置合わせされるため、電離層補正は不要である。

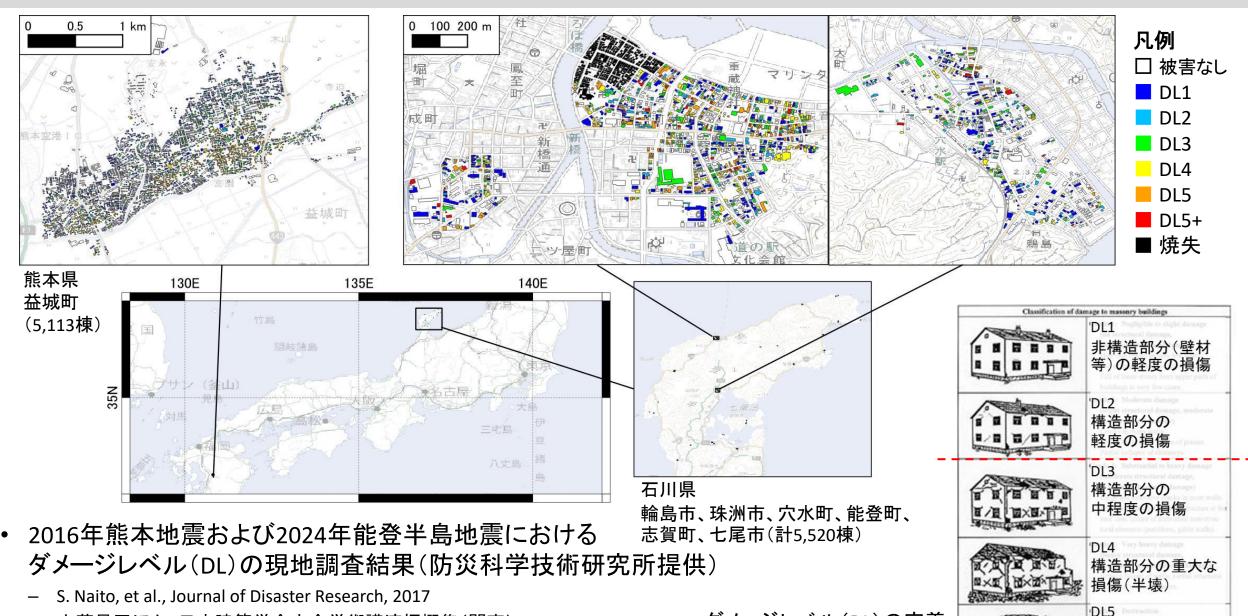


2016年熊本地震データ観測範囲



2024年能登半島地震データ観測範囲

3. 使用データ ②現地調査



・ 本検討ではDL3以上を「被害あり」と見なす(暫定)

内藤昌平ほか,日本建築学会大会学術講演梗概集(関東),2024

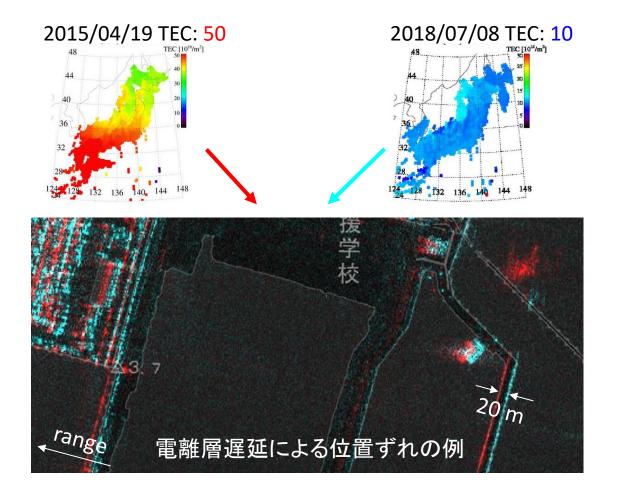
ダメージレベル(DL)の定義 (EMS98)

構造部分の倒壊

(全壊)

4. 電離層遅延補正

- LバンドSARは、電離層遅延の影響による位置ずれが大きい
- 小さい建物(一戸建て等)は、SARデータと実際の建物の 位置関係がずれ、誤判定となる能性
- → 前処理において、外部データである電子数データ(TEC)*を用い、 電離層による位置ずれを補正して使用。*ベルン大学提供



電離層遅延量(m)

$$IPD = \frac{K}{f^2} TEC \cdot \frac{1}{\cos \theta'_{inc}}$$

参考:

Hirano et al. IGARSS2021 Hirano et al. IGARSS2023

K: 電子質量、誘電率等で決まる定数(40.28)

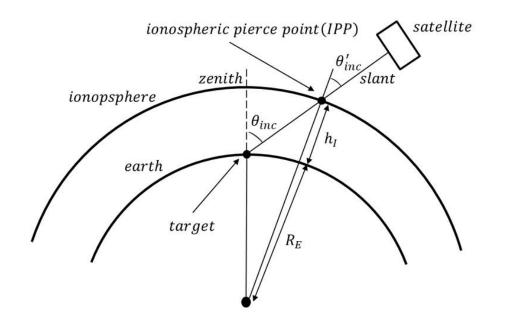
f: 周波数(1,257.5 MHz)

TEC: 全電子数(ここでは外部データ)

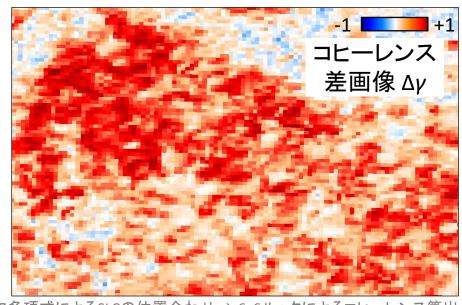
ALOS-2の位置ずれ補正量(スラントレンジ方向、m) = 0.74 × IPD - 4.0

電子数のみ考慮するための係数

ALOS-2標準データは、平均的な 位置ずれ約4m分が加味 されていることの逆補正



5. 建物被害抽出方法① 閾値法(従来的)

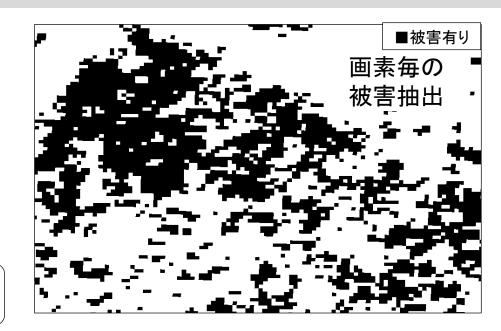


※算出手順:2次多項式によるSLCの位置合わせ → 6x6ルックによるコヒーレンス算出、 →コヒーレンス差画像 = 災害前同士コヒーレンス - 災害前後コヒーレンス

コヒーレンス差が 閾値以上なら 「被害あり」

 $\Delta y > 0.45$

第1の閾値 (コヒーレンス差)



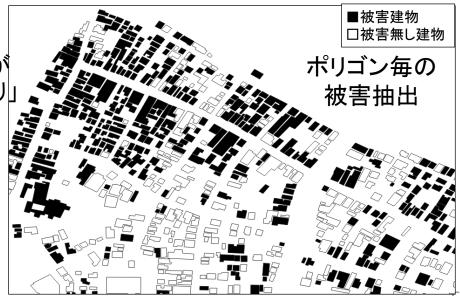


ポリゴン内の 「被害あり」画素割合が 閾値以上なら「被害あり」

Damaged pixels in bldg. All pixels in bldg.

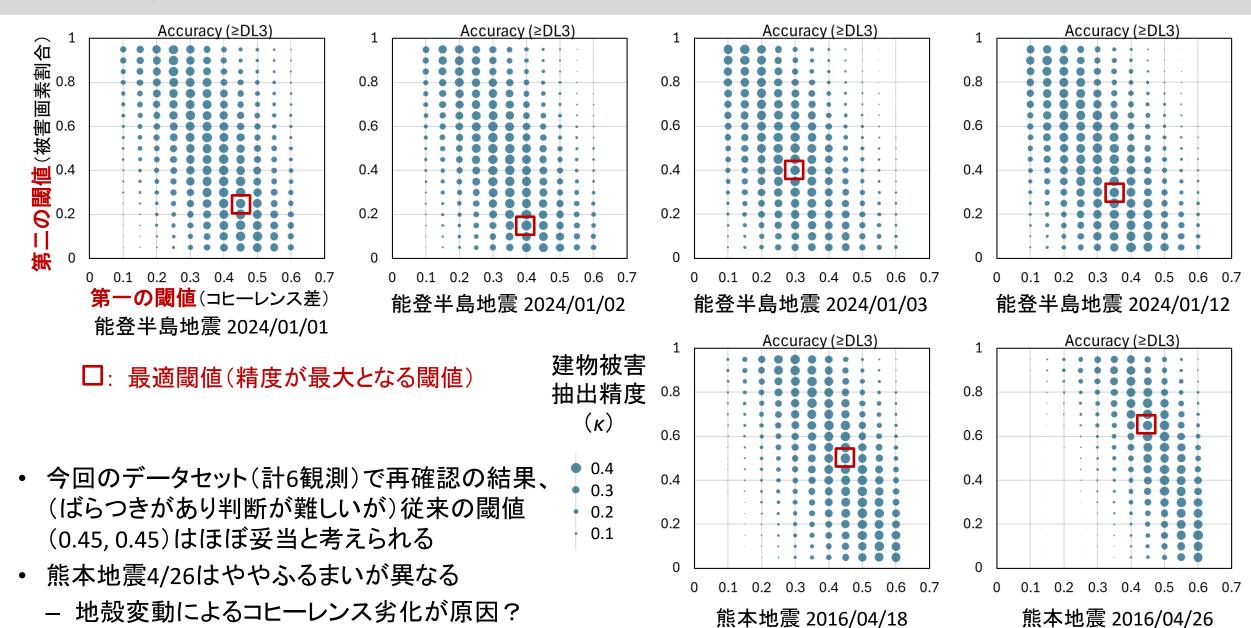
> 0.45

第2の閾値 (被害画素割合)



※建物ポリゴン には5mバッファ を適用。ポリゴン

閾値の妥当性の確認



※本結果は電離層補正「あり」のデータセットを使用

5. 建物被害抽出方法② 機械学習(試験的)

- ・ 機械学習(入力が1次元配列)を様々な手法で行い自動で比較するモジュール(pycaret)を使用し、教師あり学習
- ハイパーパラメタ等のチューニングや、特徴量選択は今後の課題

(各建物ポリゴンごとに)

入力変数x

(特徴量の1次元配列)

ポリゴン内の、

災害前コヒーレンス最小値 災害前コヒーレンス最大値 災害前コヒーレンス平均値 災害前コヒーレンス標準偏差

災害時コヒーレンス最小値 災害時コヒーレンス最大値 災害時コヒーレンス平均値 災害時コヒーレンス標準偏差

コヒーレンス差最小値 コヒーレンス差最大値 コヒーレンス差平均値 コヒーレンス差標準偏差

コヒーレンス差>0.35 の画素の割合 コヒーレンス差>0.45 の画素の割合 コヒーレンス差>0.55 の画素の割合

特徴量の数:合計24

機械学習

(以下の手法を比較、高精度のものを採用)

- AdaBoost: Adaptive Boosting
- DT: Decision Tree Classifier
- ET: Extra Tree
- GBC: Gradient Boosting Classifier
- KNN: K-Neighbors Classifier
- LDA: Linear Discriminant Analysis
- LightGBM: Light Gradient Boosting Machine
- LR: Logistic Regression
- Naive Bayes
- QDA: Quadratic Discriminant Analysis
- RF: Random Forest
- Ridge Classifier
- SVM: Support Vector Machine (Linear Karnel)
- XGBoost: Extreme Gradient Boosting

出力変数 *y* (0/1)

そのポリゴンが 被害なし(0)か 被害あり(1)か

※使用した環境: Python 3.11.9, numpy 1.26.4, pycaret 3.3.2, rasterio 1.4.3, geopandas 1.0.1, xgboost 2.1.4, shap 0.46.0

最適な学習手法の選択

- 能登4観測 + 熊本2観測の延べ25,388サンプルを使用し、10-foldで学習、交差検証
- 手法の選択結果:LightGBMが良さそう(ただし他の上位の手法も大差なし)→以後これを使用

各手法の建物被害抽出精度(精度上位10件)

精度	手法	精度					
順位	一 子 法	К	MCC	F ₁ macro			
1	LightGBM	0.360	0.376	67.5%			
2	GBC	0.356	0.374	67.2%			
3	XGBoost	0.350	0.359	67.1%			
4	RF	0.347	0.364	66.8%			
5	AdaBoost	0.343	0.356	66.7%			
6	ET	0.332	0.353	65.8%			
7	QDA	0.319	0.333	65.2%			
8	LDA	0.306	0.326	64.5%			
9	LR	0.302	0.321	64.3%			
10	NB	0.284	0.305	63.0%			

〈比較〉 閾値法(従来)の精度

ここでは閾値を0.45/0.45固定。 6観測事例(能登4、熊本2)の 精度の平均値。

精度					
К	MCC	F_1 macro			
0.251	0.281	60.8 %			

特徴量の重要度(LightGBMのSHAP値 上位10件)

順位	特徴量	SHAP _{mean}
1	災害時コヒーレンス平均値	0.8012
2	災害後強度平均値	0.2668
3	ポリゴン面積	0.1799
4	災害前強度平均値	0.1163
5	コヒーレンス差>0.45の割合	0.1029
6	コヒーレンス差>0.35の割合	0.0931
7	災害前強度最大値	0.0620
8	災害前強度標準偏差	0.0593
9	災害時コヒーレンス最小値	0.0538
10	災害前強度最小値	0.0489

- コヒーレンスの値が一番大事(予想通り)
- 閾値法(従来)で活用していない強度や建物面積の 情報を活用したことが精度向上の要因か
- 「コヒーレンス差>0.45の割合」も比較的重要
 - →「被害画素」(コヒーレンス差>0.45)の割合に着目 した従来閾値法の妥当性も改めて確認できた。

6. 結果:位置ずれ対策(電離層遅延補正)の効果

- ・電離層補正の有無で比較 → 電離層補正により精度は向上(ただし劇的な向上ではない)
- 建物被害抽出精度
 - 手法① 閾値法(従来)の場合

*各ケース(各観測、電離層補正あり・なし)で精度最大となる閾値を使用した場合の精度

	使用ALOS-2データ	能登半島地震 2024/01/01	能登半島地震 2024/01/02	能登半島地震 2024/01/03	能登半島地震 2024/01/12	熊本地震 2016/04/18	熊本地震 2016/04/26
精度*	電離層補正なし	0.330	0.302	0.341	0.381	0.305	0.217
(κ)	電離層補正あり	0.339	0.326	0.334	0.386	0.305	0.223

- 手法② 機械学習(試験的)の場合

	使用ALOS-2データ	能登半島地震 2024/01/01	能登半島地震 2024/01/02	能登半島地震 2024/01/03	能登半島地震 2024/01/12	熊本地震 2016/04/18	熊本地震 2016/04/26	全データ
精度	電離層補正なし	0.325	0.330	0.291	0.364	0.371	0.277	0.351
(ĸ)	電離層補正あり	0.335	0.365	0.310	0.365	0.379	0.299	0.360

・ 能登1/1、3、12などで電離層補正効果が少ない。電離層遅延がもともと少ないデータのためと考えられる

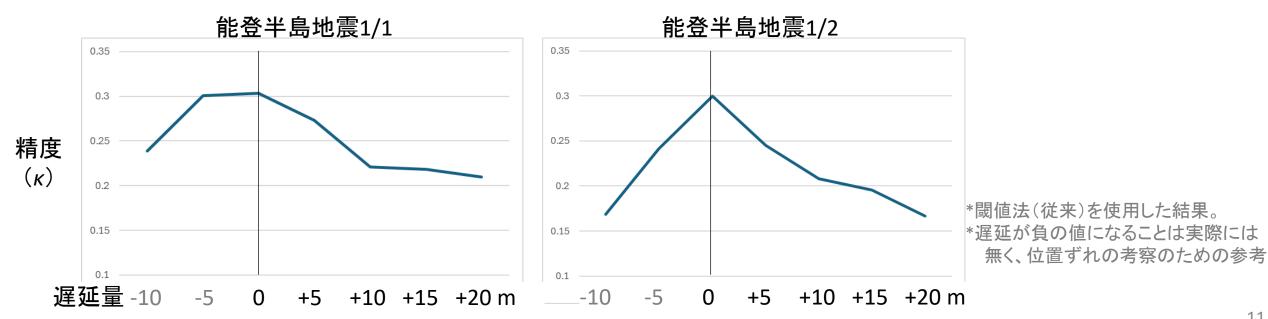
6. 結果:位置ずれ対策(電離層遅延補正)の効果

使用ALOS-2データ	能登半島地震	能登半島地震	能登半島地震	能登半島地震	熊本地震	熊本地震
	2024/01/01	2024/01/02	2024/01/03	2024/01/12	2016/04/18	2016/04/26
電離層遅延量(B1)	2.29 m	9.54 m	2.19 m	2.08 m	9.38 m	3.12 m

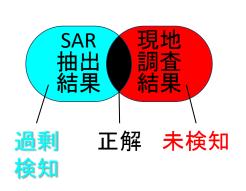
- 本データセットでは電離層遅延は最大 9.54 m、実質的な位置ずれは 9.54 4 = 約 5.5m → あまり大きくない
- 電離層がより活発(位置ずれがより大きい)だったらどうなっていたか?
 - 電離層補正済みのデータを基準に、意図的に遅延を加える
 - → 遅延が大きいほど精度低下(予想通り)

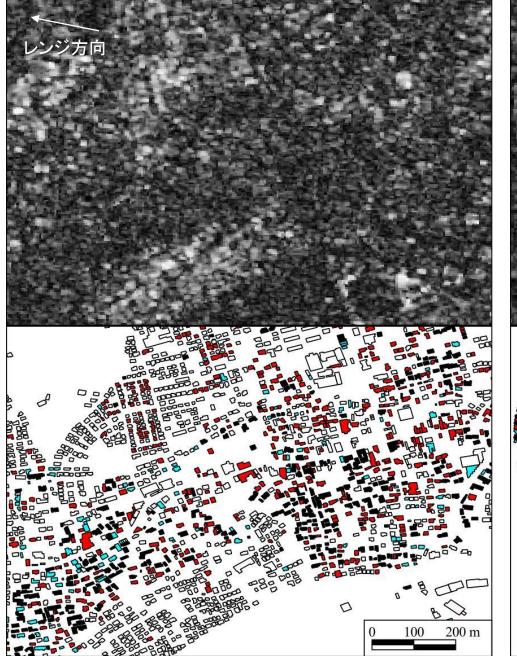
ALOS-2標準データは、平均的な 電離層遅延4m分を考慮し校正済み

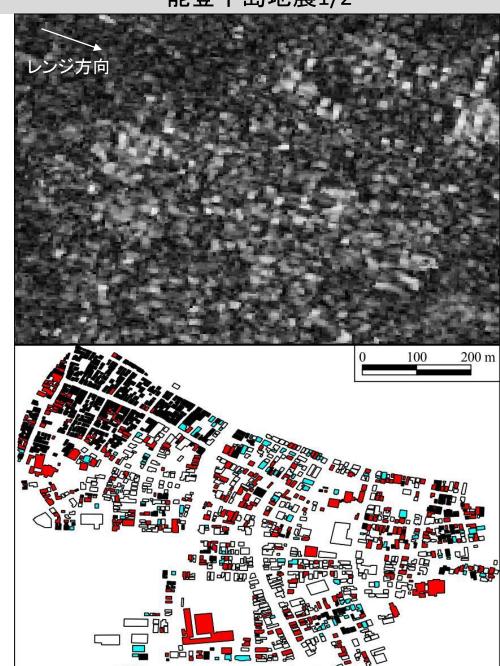
電離層遅延量と建物被害抽出精度



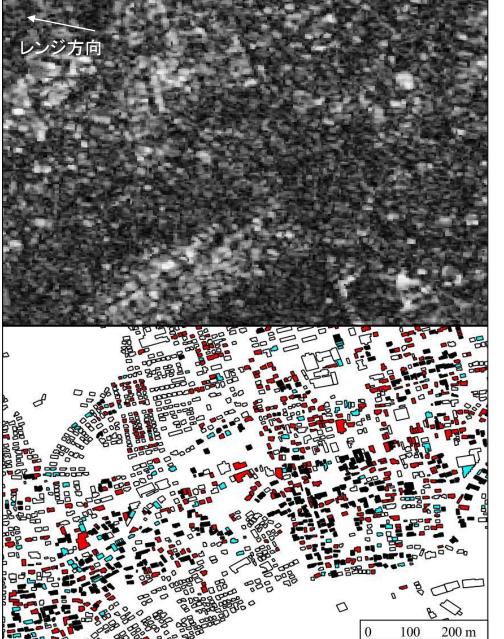
ALOS-2 コヒーレンス画像 (地震前後ペア)

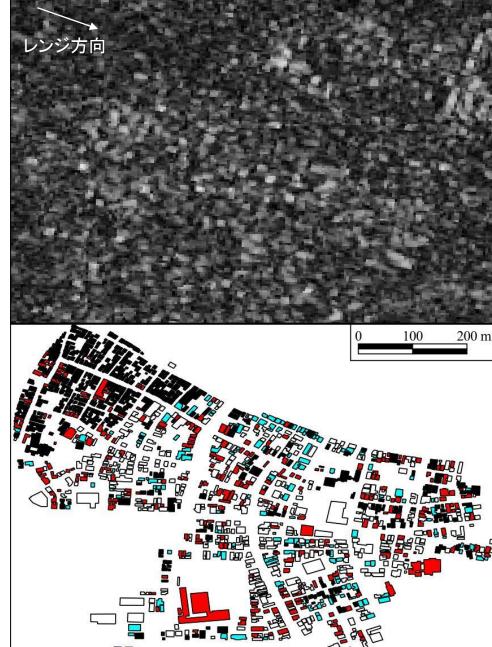




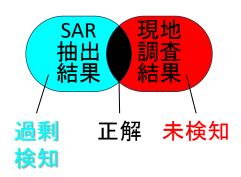


ALOS-2 コヒーレンス画像 (地震前後ペア)





被害建物抽出結果



データセット間の精度比較

• 様々な学習/テストデータの組合せで建物被害検出精度を比較

40 A 11	例: 能登半島地震 2024/01/01の場合				
(All All All All All All All All All All	学習用ALOS-2データ	テスト用ALOS-2データ			
Ⅰ.同じ観測データで(分割して)学習	能登1/1 (7割)	能登1/1 (3割)			
Ⅱ.同じ災害の別の観測データで学習	能登1/2, 1/3, 1/12				
Ⅲ.別の災害の観測データで学習	熊本4/18, 4/26	能登1/1			
Ⅳ.全データ(テストデータ以外)で学習	能登1/2, 1/3, 1/12, 熊本4/18, 4/26				

各組合せの建物被害抽出精度(κ)

∠ ¬	能登半島地震	能登半島地震	能登半島地震	能登半島地震	熊本地震	熊本地震
ケース	2024/01/01	2024/01/02	2024/01/03	2024/01/12	2016/04/18	2016/04/26
I.同じ観測データで学習	0.366	0.387	0.410	0.419	0.416	0.284
Ⅱ.同じ災害の別の観測データで学習	0.391	0.399	0.352	0.415	0.263	0.285
Ⅲ.別の災害の観測データで学習 ✓	0.281	0.285	0.222	0.297	0.406	0.224
Ⅳ.全データで学習	0.335	0.365	0.310	0.365	0.379	0.299

- ・ 「熊本地震で学習→ 能登半島地震でテスト」の精度が特に良くない(特に熊本4/26のデータが悪さをしている)
 - 地殻変動によるコヒーレンス劣化が原因?
- 「全データで学習」は全般的に良好な結果 → 以後、このデータセットを使用

まとめ

- 2024能登半島地震、2016熊本地震の計6回のALOS-2観測データ、 1万棟以上の現地データを用い、被害建物を抽出、精度検証。
- ・ 閾値法(従来的、現在実運用中)より機械学習(LightGBM等)の精度が高い。
 - 目立った過学習もなく安定。
 - 今後、実運用アルゴリズムも機械学習に置換え?
- ・ <u>電離層遅延補正</u>により、多少精度が改善する
 - 電離層が活発で10m 程度以上の大幅な遅延がある場合には有効と考えられる
- ・ 今後の課題
 - さらなる精度向上:手法の改善、現地データの収集