

Deep Learning-Based Degradation Method for Super-Resolution on Pleiades Satellite Image: A Comparison with Rule-Based Degradation Method and Paired Dataset

〇ムハマドサトリオウィチャクソノ・小林洋平・佐藤俊明・坂元光輝・中村翔・島崎康信

 Muhammad Satrio Wicaksono, Yohei Kobayashi, Toshiaki Sato, Mitsuteru Sakamoto, Sho Nakamura, Yasunobu Shimazaki

背景:超解像技術について

LQ

Real-ESRGAN+

GT

SwinIR-GAN

StableSR

DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior: FCCV 2024

・超解像(Super Resolution)とは、 低解像度の画像や映像を高解像度に 変換する技術。画像の細部を鮮明に 再現することが目的。

・現在、様々な超解像モデルが存在。 CNN、GAN、Transformerなど、 深層学習やAIを活用した方法が主流。

課題:リモートセンシング画像の超解像におけるドメイン問題

衛星画像

- 解像度
- ・被写体との距離
- 光源
- 撮影時期
- 撮影方向
- 撮影環境
- ・センサー特性
- センサー設定

教師データと超解像技術

・ 自己教師型(LRシミュレーション)

高解像度画像を任意の劣化手法で縮小し画像ペアを作成。 利点:学習データを容易に作成可能。学習自体も容易。 欠点:学習時と異なる縮小画像に対して性能が低下。

・ペア画像型

解像度の異なるカメラ等で撮影した画像ペアを作成。 利点: 実用性が高く、ペアで学習できるため性能が良好。 欠点: 学習データの作成、位置合わせが非現実的で困難。

・ 非ペア 画像型

解像度も被写体も異なる画像セットを作成。 利点: 実データを利用した学習データの作成が容易。 欠点: 学習にGANなどの特殊なプロセスが必要。

自己教師型のルールベースによる劣化例(2021RealESRGAN)

実画像: 衛星画像

Real-ESRGAN: Training Real-World Blind Super-Resolution With Pure Synthetic Data: ICCV 2021

入力: 航空写真

出力:劣化結果

入力: 航空写真

1. 課題

- 1. 実際の衛星画像とルールベースによる劣化画像との大きな差異
- 2. アンバランスなペア画像の問題

LR: Low Resolution HR: High Resolution

PASCO

2.アプローチ

- 1. 実画像に近いLR画像とバランスの取れたデータセットを生成し、超解像 処理の性能の向上を図る
- 3. 提案手法
 - 1. ペア画像データセットで劣化モデルを学習
 - 2. 学習済み劣化モデルを使って、HR画像からより高精度なLR画像を生成
 - 3. 生成したLR画像と対応するHR画像で超解像モデルを学習

4.比較手法

- 1. 既存手法(ルールベース劣化)による学習
- 2. 提案手法(劣化モデル利用)による学習
- 3. ペア画像データセットをそのまま学習

CNNベースの劣化モデル

ペア画像とGANの枠組みを用いたモデルの学習

PASCO

超解像モデルのアーキテクチャ

Recursive Generalization Transformer for Image Super-Resolution: ICLR 2024

Recursive Generalization Transformer (RGT):

Recursive-generalization self-attention (RG-SA)法を 使用した超解像モデル。入力特徴が代表的なfeature-mapに蓄積 され、cross-attentionによってグローバルな情報を取得。

DRCT: Saving Image Super-resolution away from Information Bottleneck: CVPR 2024

Dense-Residual-Connected Transformer (DRCT) :

Dense-residual connection を導入することで、特徴の強度抑制 問題に対処した超解像モデル。層間で情報の流れを維持し、重要な情報 が失われたり弱まったりするのを抑止。

PASCO

これらのモデルにはそれぞれ長所と短所があり、今回はこれらのモデルを3種類の手法(ルール ベース劣化、ディープラーニングベース劣化(CNN)、ペア画像)で学習させ、その結果を検証

データセットの内容

ペア画像: 航空写真オルソ画像とPleiades画像

地域	特徴	画像数
Sakai	Forest, Sea, Rural area, Farmland	72,185
Sendai	City	1,051

高解像画像: 航空写真オルソ画像のみ

地域	特徴	画像数
Hamada	Forest, Sea, City	8,424
Noda	City, Industries	5,724
Nishin	City, Farm	2,700
Toyota	Forest, Farm	2,934
Sendai	City, Industries	8,208
Kita Kyushuu	City, forest	8,964
Siraoka	Farm, city	2,484

高解像: 256x256 pixel 低解像: 128x128 pixel

テストデータ: ペア画像: SendaiとSakai、96枚

別ドメイン画像: Sakai、48枚

同ドメインのLR画像の推定結果(ペア画像テストデータ)

入力: 航空写真

出力:LR推定結果

実画像: 衛星画像

異なるドメインのLR画像の推定結果

PASCO

超解像の適用結果(1)

超解像の適用結果(2)

超解像の適用結果(3)

超解像の適用結果(4)

検証結果(同ドメイン)

モデル	劣化データ	SSIM↑	PSNR ↑	LPIPS↓	DISTS↓	NIQE↓
RGT	Rule-based	0.2923	11.0933	0.4419	0.2757	6.6602
	CNN-based	0.3699	16.3904	0.3471	<mark>0.2143</mark>	<mark>5.4940</mark>
	Pair	<mark>0.3893</mark>	<mark>16.8087</mark>	<mark>0.3407</mark>	0.2169	5.8159

モデル	劣化データ	SSIM↑	PSNR ↑	LPIPS↓	DISTS↓	NIQE↓
DRCT	Rule-based	0.3035	11.0049	0.4509	0.2782	7.9236
	CNN-based	0.3946	<mark>16.6581</mark>	<mark>0.3461</mark>	<mark>0.2157</mark>	<mark>6.1271</mark>
	Pair	<mark>0.3950</mark>	15.8115	0.3795	0.2680	6.1457

異なるドメインの結果(RGTモデル)

HSV変換後のV値(Value値)の画像比較

検証結果(異なるドメイン)

モデル	劣化データ	SSIM↑	PSNR ↑	LPIPS↓	DISTS↓	NIQE↓
RGT	Rule-based	0.2873	8.6824	0.4961	0.3676	7.1052
	CNN-based	<mark>0.4183</mark>	<mark>14.4347</mark>	<mark>0.4087</mark>	<mark>0.2970</mark>	<mark>6.9825</mark>
	Pair	0.3721	13.6940	0.5494	0.4264	<mark>6.5495</mark>
モデル	劣化データ	SSIM↑	PSNR ↑	LPIPS↓	DISTS↓	NIQE↓
DRCT	Rule-based	0.2979	8.6661	0.4695	0.3606	<mark>8.8713</mark>

まとめと今後の展望

まとめ

- 評価結果
 - ✓ 学習データセットと類似のドメイン:ペアデータセット学習モデルが優位
 ✓ 学習データセットと異なるドメイン: CNNベースのLRシミュレーションモデルが優位
- ・考察
 ✓ 学習の安定を図るにはバランスの取れたデータセットを構築する必要がある
 ✓ モデル精度向上のためには学習データセットが現実の条件にどれだけ近いかが重要
 ✓ 学習データセットの構成によってデータセットを変更するのがよい

今後の展望

- RGTとDRCTモデルに加え、他のTransformerモデルについても比較検討を予定
- 近年、Diffusionモデルの応用事例が増加しているため、本研究をDiffusionモデル にも拡大する予定

ご清聴ありがとうございました

© PASCO CORPORATION