

マルチソース変化抽出システムの開発

Development of multi-source change detection system

一般財団法人リモート・センシング技術センター(RESTEC)

○安達勇介 齊藤蔵人 佳山一帆 瓜田真司 栗田充喜 平松真宙 平野晴也 佐藤鞠江 出原真理子 住田桃子 山之口勤 古田竜一 黒岩かおり 石井景子

はじめに 衛星リモートセンシングデータを用いた災害対応やインフラ監視において、顧客が求めるタイミングでの情報提供が大きな課題となっている。 SARデータによる全天候型の監視サービスを例に挙げると、過去にSARデータが観測されていない場合や、同じ条件の観測がなかった場合でも 変化抽出を実施できることが求められる。

本ポスターでは、RESTECが開発に取り組んでいる**マルチソース変化抽出システム**を紹介する。

疑似SAR生成例	浸水被害での変化抽出例	都市開発での変化抽出例
 ・光学画像から疑似SAR画像の作成を行う 研究¹⁾等を参考にし、疑似SAR作成ツールを実装 ・ここではU-Netを使用した場合の結果を Fig.2(c)に示す。現在は単一の光学とSARのペア画像中の限られた学習データを利用 	・本システムでは、光学とSARの場合のほか、SAR同士での ・入射角 ・偏波 ・衛星軌道(A/D) ・観測バンド の違う場合においても、それぞれパターン別の	愛知県長久手市周辺 愛・地球博記念公園(ジブリパーク)の建設 および周辺の宅地開発、鉱山の変化を確認

し、都市域や水域の明暗といったSARの特 徴を反映した災害前の状態を再現 ・疑似SARを作らず光学画像とSAR画像の 直接入力が可能なDPFL-Net²⁾による変化 抽出も構築中

Fig.2. The pseudo SAR image (c) generated from optical image (a) and SAR image (b)

土砂災害での変化抽出例

LONFIGノアイルを読み込んで変化抽出処埋を行う。 ・2015年9月の関東・東北豪雨による茨城県の浸水事例を対象に、 本システムの変化抽出アルゴリズムのうちの一つである色相を 使用した結果をFig.3に示す。

・国土地理院の判読結果を正解とした際の適合率はそれぞれ0.8を 超える結果となった。 Table 1. Satellite data (SAR)

used for validation

衛星	観測日	入射角 (°)	衛星軌道
ALOS-2	2015/4/13	35.4	Ascending
ALOS-2	2015/9/11	35.4	Ascending
ALOS-2	2015/7/30	39.7	Descending
CSK	2015/8/21	53.9	Descending
CSK	2015/9/11	59.3	Descending

Fig.3. Change detection result of the four cases. The red line indicates true area of flood, and red pixels show the change detected by our system.

ALOS-2(2014/8/8と2023/6/2)の変化抽出結果 東京都練馬区周辺

西側に外環道、東側にとしまえん跡地の開発が 確認でき、小規模な宅地開発も確認

ALOS-2(2014/12/4と2023/7/6)の変化抽出結果

・現在構築中のDPFL-Netで 変化抽出を行った場合(左図) ・角度違いのSARデータを 入力した場合、変化抽出を 従来手法と同程度の精度で 抽出可能 ・現在、他の光学とSARなどで の評価中

・北海道胆振東部地震事例で光学画像から 作成した疑似SARとSAR画像での変化抽出 ・正解ポリゴンに対する適合率としては 0.6程度であるが、この精度は同条件SAR ペアを使用したときと同程度

光学画像 Landsat-8 (2015/9/13)から作成した疑似 SARとSAR画像 ALOS-2 (2018/9/8)の変化抽出結果

DPFL-Netでの抽出結果 (角度違い: CSK; 20150821-20150911)

・2019年10月の台風19号に よる長野県の浸水被害の事例 ・光学画像からの疑似SAR画像 の作成と従来手法での変化抽出 を行い、適合率0.78を示した。 ・浸水被害の抽出という面での 汎用性も確認中

光学画像SPOT7(2019/6/26)から 作成した疑似SARとSAR画像ALOS-2 (2019/10/13)の変化抽出結果

・マルチソース変化抽出システムの全体像 ・疑似SAR画像の作成 ・浸水、土砂災害、都市開発の変化抽出 について試行中のものも含めて紹介した。 ・光学とSARの組み合わせであった場合や SAR同士で観測バンドが異なる場合でも本シ

ステムは浸水箇所を抽出できた。 ・現在は、疑似SAR画像作成を単一画像ペア から実施しており、大量の学習データを用意 しての変換精度向上も試行中

【参考文献】

1) X. Li, et al. : A deep translation (GAN) based change detection network for optical and SAR remote sensing images, ISPRS Journal of Photogrammetry and Remote Sensing、179、pp14-34、2021 2) M. Yang, et al. : DPFL-Nets: Deep Pyramid Feature

Learning Networks for Multiscale Change Detection, IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 11, pp. 6402-6416, Nov. 2022