

ハイパースペクトルセンサHISUIを利用した 二酸化炭素およびメタンガス排出源の検知

Detection of carbon dioxide and methane emission sources using hyperspectral sensor HISUI

株式会社地球科学総合研究所 光原奈美、成田龍彦

一般財団法人宇宙システム開発利用推進機構 武田知己

背景と目的

カーボンニュートラル社会移行へ向けて、近年二酸化炭素(CO2)やメタン排 出源のモニタリングの需要が高まっているが、既存の温室効果ガス観測技術 衛星は空間分解能が数km(例えばGOSAT-2(いぶき2)は9.7km、Sentinel-5Pは7km)であり、ガス排出源の特定やモニタリングは困難である。

一方、国際宇宙ステーション(ISS)に搭載されているHISUI(Hyperspectral) Imager SUIte) センサは20m×31mの高い空間分解能を有する。

目的

既存のハイパースペクトルセンサ(EO-1 / Hyperion、航空機搭載型センサ AVIRISなど)で実績のあるCO2およびメタンガス検知手法をHISUIセンサデー タに適用し、ガス排出源の検知結果について検証する。

光学衛星データを利用したガス検知の基本原理

地表から反射あるいは放射された電磁エネルギーは、大気中に存在する水 蒸気、CO2、メタンなど特定の大気成分により吸収される。CO2、メタンが存在 する場所では、特定の波長帯(例えばメタン:2,150~2,450nm付近、CO2: 1,980~2,100nm付近)で反射率が小さくなる。この特徴を利用し、CO2やメタ ンを区別して検知することが可能である。

Fig.1. Schematic diagram of electromagnetic energy attenuation by GHG (left) and CO2 and CH4 transmittances (MODTRAN) (right).

HISUIセンサの性能

HISUIは、経済産業省から委託を受けた一般財団法人宇宙システム開発利 用推進機構が開発・運用する宇宙実証用ハイパースペクトルセンサで、2019 年12月12日にISSの「きぼう」に設置され、2022年10月12日にデータが一般 公開された。

VNIR-SWIR spectral bands												Spatial	20m×31m
HISUI (2019.12 -)				18	35 bands							resolution	
EO-1 Hyperion (2000.11 - 2017.3)				242	(220 <i>)</i> bana	ls						Swath	20km
Sentinel-5p (2013.7 -) Sentinel-2 MSI	Costal Aerosol Blue Green Red	1 NIR2 6 Vagetation NIR, Red Edge Narrow NIR	Water Japar		SWIR-Cirrus	SWIR			SWIR	SWIR 7		Spectral coverage	400~2,500nm
(2015.6 -) WorldView-3 (2014.8 -)	Costal Green Red Blue Yellow	Red Edge	Near-IR2	SWIR-1		SWIR-2	WIR-4		SWIR-6 S SWIR-5 SWIR	WIR-8 7		Spectral resolution	VNIR:10nm SWIR:12.5nm
Landsat-8 OLI (2013.2 -)	/Aeropi Blue Green Red	5			Cirrus 9	SWIR 1			SWIR 2 7			Number of band	185 (VNIR:58bands SWIR:127bands)
(1999.12 -) 0	.3 0.5	0.7 0.9) 1.:	1 1. Wav	.3 1 elength (mic	.5 1 rro meter)	.7 1.	9 2.	567 12	8 9 2.3 2.	5	Signal to noise ratio	≧450@620nm ≧300@2,100nm

Table 1. Spectral bands of HISUI & other sensor (left) and basic specifications of HISUI (right).

解析手法

i. CO2検知

CO2 CIBR (Continuum Interpolated Band Ratio (Spinetti et al. (2008))を適 用し、CO2の大気透過率が顕著に減少する波長2,000nm付近の3つのバンド (B146: 1,987.645nm、B148: 2,012.625nmおよびB150: 2,037.605nm)を利 用してCO2検知を試みた。

ii. メタン検知

Bradley et al. (2011)が用いた、メタンの大気透過率が比較的顕著に減少す る2,300nm付近のバンド171(2,299.895nm)とCO2の大気透過率の減少する バンド152(2,062.585nm)を利用した比演算処理を行った。

解析結果

ii. 石油関連施設を対象にしたメタン検知結果

i. 製鉄所を対象にしたCO2検知結果

アノマリ(図中白矢印)は、煙突、フレア、溶鉱炉と推定される建物の上に位置 しており、製鉄所から排出された比較的高濃度のCO2の存在を示唆している。

6箇所のアノマリは石油関連設備からの排出を示唆している。下図中央の東北東 方向へ延びたアノマリは、HISUI観測時の風向きを反映したものの可能性がある。

