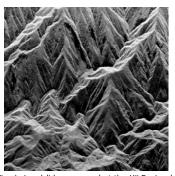


Pi-SAR2用新機上処理装置の開発

Development of a new onboard processer for Pi-SAR2

○上本純平・児島正一郎・梅原俊彦・小林達治・佐竹誠・浦塚清峰・松岡建志


Jyunpei Uemoto, Shoichiro Kojima, Toshihiko Umehara, Tatsuharu Kobayashi, Makoto Satake, Seiho Uratsuka and Takeshi Matsuoka 情報通信研究機構(NICT)

1. はじめに

2. 新機上処理装置

開発前の状況

- ① 旧機上処理装置により単偏波(白黒)画像のみ機上処理可
- ② 観測から15分で地上伝送(2011.03/ETS-VIII画像伝送実験より)
- ③ 観測情報/地理情報の提供不可

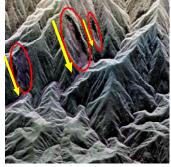


Fig. 1. Landslides occurred at the Kii Peninsula observed by Pi-SAR2 on 7 Oct., 2011. Left and right panels are the monochromatic VV and color composite (Red; HH, Green; HV, and Blue VV) images, respectively. The size of images are 5 km \times 5 km.

課題

- ① 土砂崩れの判読等は単偏波(白黒)画像では困難
- ② 常備の通信手段が無い
- ③ 観測場所の即時同定が困難←他観測データとの比較も難しい

新機上処理装置の開発

3. 機上処理・地上伝送の流れ

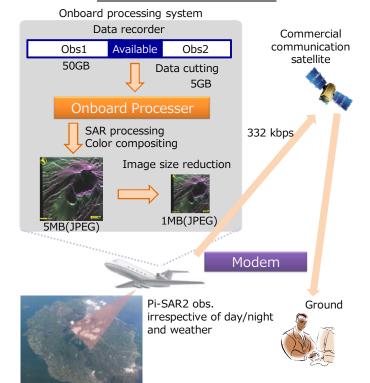


Fig. 2. Schematic diagram of processing and data transfer

SARデータの画像化処理演算は、 膨大なピクセルに対する 観測信号と参照信号との相関処理

並列処理を得意とするGPGPU(General-Purpose computing on Graphics Processing Units)の適用

Table 1. Specification of the newly developed onboard processer for Pi-SAR2.

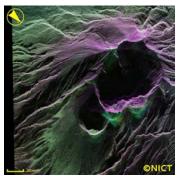

CPU	Intel Xeon X5675 (3.06 GHz, 6 cores)
GPU	NVIDIA Tesla M2090 (655Gflops@double precision) × 2
Memory	192 (GB)
Storage	Intel 320 SSD 3.6 (TB)
Operating System	RHEL5.0 (x86_64)
GPU architecture	CUDA 4.2
Capacity	W437 × H43 × D716 (mm) (1U for 19 inch rack)
Power consumption	Less than 1000 (W)

Table 2. Comparison of processing time for 1 km \times 1km single polarimetry data

	Newly developed processer (A)	Older one (B)	Ratio (B/A)
SAR processing only	12 (sec)	262 (sec)	21.8
End-to-End processing time	85 (sec)	335 (sec)	3.9

1U/930Wに抑えつつも、処理範囲1 km × 1 kmにおいて 4倍程度の高速化を達成

4. 新機上処理装置を用いた処理・伝送例

2013年8月18日に発生した桜島昭和 火口の爆発的噴火を受け、8月20日に 緊急観測を実施。伝送のために画質を 劣化させているが、Pi-SAR2の高い空 間分解能により火口や山の斜面の細か い起伏形状等を見て取ることができる

Fig. 3. Onboard processed and transferred image of Mt. Sakurajima observed on 20 Aug., 2013. The size of image is $2 \text{ km} \times 2 \text{ km}$.

観測終了後10分以内で多偏波 疑似カラー画像(1km × 1km) を提供可能である事を確認

Table 3. Time sequence from observation to release of the image shown in Fig. 4.

Event	Elapsed Time	JST		
Take-off	-	11:17		
Obs.(path 10) end	0 min.	13:14		
Data extracting	2 min.	13:16		
SAR processing	3 min.	13:17		
Data transfer	8 min.	13:22		
Landing	146 min.	15:40		

Fig. 4. Onboard processed and transferred KMZ observed on 25 Aug., 2013. The size of image is 1 km \times 1 km. Observational and geographic information is shown in the balloon.

<u>5. まとめ</u>

単偏波(白黒)画像と比べてより判読性の高い多偏波疑似カラー画像の機上処理伝送実現を目的とし、Pi-SAR2用の新機上処理装置を開発した。入力から画像出力までの処理時間について、GPGPUを用いる事により処理範囲1km四方のデータで約4倍の高速化を達成し、それにより機上での多偏波疑似カラー画像処理が可能となった。また、利便性向上を目的として観測情報付きのKMZ、及びHTML形式で処理画像を出力する機能を新たに追加している。2013年8月の実証実験により、観測終了後10分以内で多偏波合成疑似カラー画像を機上処理・地上伝送できることを確認した。

<u>6. 謝辞</u>