RSSJ特別セッション 2014.5.15 北極海航路における衛星リモートセンシングの役割

北極海研究の国内・海外の状況と 衛星リモートセンシングへの期待

国立極地研究所 北極観測センター

之行

最近の北極観測の国内活動と国際的な要請

- ・2009年日本の北極評議会オブザーバー国申請
- · 2010年地球観測推進部会 北極研究検討作業部会
- · 2011年北極戦略研究小委員会(文科省)
- · GRENE北極気候変動研究事業2011-2016
 - 国内の研究力集中と国際的研究評価へ
- · 北極担当大使(外務省)着任(2013年)
- ・ 海洋基本計画(2013年):北極圏への言及
- 北極評議会(AC):日本のオブザーバー国参加承認(
 2013年) 環境研究の貢献は日本の特長。技術力も アピール。
 日本へのAC作業分科会参加要請

12月1日に配置した粒子の4月30日時点での分布 を使って夏季の海氷分布を予測

東京大学 山口研究室

AMSR2による海氷厚さの推定 気候研究:温暖化影響・海氷融解の観測 北極航路予測 冬季の海氷成長⇒夏季の縮小予測へ

海氷の年数~厚さ

- 多年氷の減少
 2007年減少のインパクト
- 面積は復活しても厚さに 影響が残る。
- 1年氷:薄い、割れやすい、移動しやすい、光を通す(水温、生態)。

連鎖する変化

気温上昇→融解→水面→日射吸 収→海水温上昇+氷表面融解 隙間。岸から分離。

氷が薄くなる。→氷は動きやすくなる。北極海から流出。

広がった海水面では、低気圧活動 が活発になる。波浪の増加。

温かくなって融ける+割れる、流れる、が繰り返す。

83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 Year

pen water 1 2 3 4 Data: NSIDC

Winter sea ice coverage, Changing winter sea ice conditions

2013.03.04 & 02.18NOAA

Frequent opening/ridging Water vapor and heat releases Summer ice prediction

海氷が減った北極海での低気圧発達 Great Arctic Cyclone (GAC) 海況・海氷の急変

20120803_D

GCOM-W AMSR2

https://ads.nipr.ac.jp/VISION/

Purpose To promote the mutual use of data interact across disciplines and develop online visualization application operable intuitively

Target Data

1-dimentional (time series etc.) 2, 3-dimensional (satellite, Model Out put)

Online visualization application

Function

Automatic loading of data Zoom and move the drawing area by mouse Graph display Color map Contour Map Time series animation Time series graph plot Cross-section graph plot Text data output

JAXAとの共同で極域環境監視モニター(VISHOP) 2014年5月中旬ころ運用開始予定

国際動向、多国間の枠組み

World Economic Forum Jan. 2014 Davos, Switzerland

Challenge 1: The Arctic needs protection from environmental damage, resolution on certain global agreements, and new collaborative models to secure sustainable growth. Challenge 3: The Arctic needs measures to better ensure human and environmental safety in the face of increased shipping and offshore activity.

Challenge 2: The Arctic needs investment.

Challenge 4: The Arctic needs science.

Arctic Observing Summit 2014 at Arctic Science Summit Week(ASSW)

9-11 April, 2014 Helsinki, Finland

AOS 2014 Themes

- Stakeholders and Arctic Observations Science Coordination for
- □ Improved Arctic Observing
- Technology and Innovation
- **Remote Sensing Solutions**
- Data Management

21

azimuthal equidistant projection

北極海研究の国内・海外の状況と衛星リモートセンシングへの期待

北極をめぐる国際状況

・北極圏の気候変動が環境、社会、産業に影響を与え、その影響は、北極圏の中にとどまらない。⇒ 全球気候/社会システム於ける位置づけへ

- ・2013年5月15日、日本他多くの中緯度の国が北極評議会オブザーバー国となった。
 ⇒ 中緯度の国も含んだ北極への国際的な取り組みが求められている。
- ・日本の科学研究(観測、解析、予測技術)、国際協力への期待が大きい。
 - ⇒ 評価は高まりつつあり、日本への要請は増えている。
- ・開発と環境保全の両方のバランス ⇒ 持続可能性が求められている。
- ・科学の役割 ⇒ 科学以外も含めた国際協力関係を高めることが期待されている。

北極研究活動と社会の関心

・国内:地球温暖化、大気循環、物質輸送、陸・海洋生態系、海洋環境、雪氷と水循環、海水準/氷床不安定、日本(極東アジア)の気候・社会への影響

- 国際的:気候変動研究に対する日本の役割強化、環境監視への貢献
- ・経済や社会(産業:航路・水産・資源) 安定した利用と環境とのバランス

衛星リモートセンシングへの期待

- ・広域、接近や滞在困難、分散する基地を面的につなぐ北極観測を可能にする。
- ・将来予測につながるモデルと観測をつなぐもの
- 国境を越えた観測を可能にする:(日本:北極域に領土を持たない)
- ・データのアーカイブとリアルタイム提供(調査研究、生活・社会、産業、安全)